Glucosylglycerol, a compatible solute, sustains cell division under salt stress.
نویسندگان
چکیده
The cyanobacterium Synechocystis sp. PCC 6803 accumulates the compatible solute glucosylglycerol (GG) and sucrose under salt stress. Although the molecular mechanisms for GG synthesis including regulation of the GG-phosphate synthase (ggpS) gene, which encodes GgpS, has been intensively investigated, the role of GG in protection against salt stress remains poorly understood. In our study of the role of GG in the tolerance to salt stress, we found that salt stress due to 450 mM NaCl inhibited cell division and significantly increased cell size in DeltaggpS mutant cells, whereas the inhibition of cell division and increase in cell size were observed in wild-type cells at high concentrations of NaCl, such as 800 mM. Electron microscopy revealed that, in DeltaggpS cells, separation of daughter cells was incomplete, and aborted division could be recognized by the presence of a structure that resembled a division ring. The addition of GG to the culture medium protected DeltaggpS cells against salt stress and reversed the adverse effects of NaCl on cell division and cell size. These observations suggest that GG is important for salt tolerance and thus for the proper division of cells under salt stress conditions.
منابع مشابه
Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana
Many organisms accumulate compatible solutes in response to salt or desiccation stress. Moderate halotolerant cyanobacteria and some heterotrophic bacteria synthesize the compatible solute glucosylglycerol (GG) as their main protective compound. In order to analyse the potential of GG to improve salt tolerance of higher plants, the model plant Arabidopsis thaliana was transformed with the ggpPS...
متن کاملThe gene ssl3076 encodes a protein mediating the salt-induced expression of ggpS for the biosynthesis of the compatible solute glucosylglycerol in Synechocystis sp. strain PCC 6803.
Acclimation to high salt concentrations involves concerted changes in gene expression. For the majority of salt-regulated genes, the mechanism underlying the induction process is not known. The gene ggpS (sll1566), which encodes the glucosylglycerol-phosphate synthase responsible for the synthesis of the compatible solute glucosylglycerol (GG), is specifically induced by salt in the cyanobacter...
متن کاملThe SigB σ factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp. PCC 6803.
Changing of principal σ factor in RNA polymerase holoenzyme to a group 2 σ factor redirects transcription when cyanobacteria acclimate to suboptimal environmental conditions. The group 2 sigma factor SigB was found to be important for the growth of the cyanobacterium Synechocystis sp. PCC 6803 in high-salt (0.7 m NaCl) stress but not in mild heat stress at 43°C although the expression of the si...
متن کاملSalt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.
The cyanobacterium Synechocystis sp. strain PCC 6803 is able to acclimate to levels of salinity ranging from freshwater to twice the seawater concentrations of salt by accumulating the compatible solute glucosylglycerol (GG). Expression of the ggpS gene coding for the key enzyme (glucosylglycerol-phosphate synthase) in GG synthesis was examined in detail. Under control conditions, the GgpS prot...
متن کاملMolecular biology of cyanobacterial salt acclimation.
High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 131 4 شماره
صفحات -
تاریخ انتشار 2003